BIOCHEMISTRY

SECOND YEAR BSc. MLT

CARBOHYDRATE METABOLISM

ESSAY-10 MARKS

- 1. Describe the HMP shunt pathway and state it's significance
 - ➢ Define
 - ➤ 2 phases
 - ➢ Steps
 - ➢ Regulation
 - ➢ Significance
- 2. Describe glycolytic pathway in the body, Add a note on energetics and regulation.
 - ➢ Define
 - Site
 - Significance
 - ➢ Steps
 - Regulations
 - ➢ Energetics
- 3. Why is the kreb's cycle as final common pathway of metabolism. Explain
 - Define krebs cycle
 - ➢ Functions
 - > Steps
 - ➢ Significance
- 4. Describe the formation and fate of pyruvic acid in the body
 - Detail about formation pyruvic acid
 - ➢ Fate of pyruvic acid
- 5. Describe the various mechanism which regulate the blood sugar level
 - ➢ Enzymatic regulation
 - Hormonal regulations

- 6. Describe how blood glucose level is maintained. Mention it's harmful controls
 - Blood Sugar Regulation
 - > Control
- 7. Define glycosuria and explain in briefly about the different types of the glycosuria
 - Define
 - > Types
 - Clinical
 - Manifestations,
 - Lab diagnosis
- 8. What is the GTT, Describe the GTT with its features, precautions and significance.
 - ➢ Define
 - > Types
 - Indications
 - ➢ Features
 - > Significance
- 9. Describe the formation, fate and role of lactic acid in the body.
 - Define Detail About Formation
 - ➢ Fate
 - > Role
- 10. How is the blood glucose level is regulated.
 - Hormonal Regulations
 - Enzymatic Regulations
- 11. Define glycogenesis, glycogenolysis and gluconeogenesis, define the role of epinephrine in glycogenolysis
 - Define each one and it's step
 - Role of epinephrine in glycogenolysis
- 12. Describe the fate of pyruvic acid in the body
 - Oxidation reactions of pyruvate
- 13. Describe how glucose tolerance curve is obtained, explain it's significance.

- ➢ GTT-define
- Contraindications
- Procedure
- > Graph
- ➢ Significance
- 14. What is gluconeogenesis? Describe briefly the metabolic pathway involved in the gluconeogenesis
 - > Define
 - ➢ Steps
 - ➢ Enzymes
 - ➢ Regulation
 - ➢ Energetic
- 15. What is the normal blood glucose level? how is it maintained in the body
 - Blood glucose level and it's regulation
- 16. "krebs' clinical cycle is the common pathway of metabolism. Justify the statement.
 - ➢ Krebs cycle- define
 - ➢ Steps
 - ➢ Enzymes
 - ➢ Regulation
 - > Energetic
- 17. Describe the process of glycogen formation and breakdown in the liver. Highlight the point of difference and their significance
 - Steps of Glycogenesis and glycogenolysis
 - Difference between those two
 - > Significance
- What is gluconeogenesis? give an outline of reactions. How the reactions controlled?
 What is biological importance of these reactions
 - Define Gluconeogenesis
 - ➢ Steps
 - ➢ Enzymes
 - ➢ Regulation

➢ Energetic

- 19. TCA cycle is called amphibolic in nature justify
 - ➢ TCA cycle- define
 - Steps and its significance
- 20. What is the normal blood glucose level. How it is regulated. Add note on enzymatic methods of estimation of blood glucose level.
 - ➢ FBS, PPBS NORMAL
 - Regulation, hormonal regulation
 - Estimation methods
- 21. Give the normal blood glucose levels in fasting and postprandial state. Discuss various methods of glucose estimation
 - ➢ Normal values- FBS,PP
 - Estimation methods-Enzymatic and Non-enzymatic (Principle, procedure, interpretation)

SHORT ESSAY – 5 MARK

- 1. Cori's cycle
 - ➢ Define
 - ➤ Steps
 - ➢ Significance
- 2. Gluconeogenesis
 - ➢ Define
 - ➢ Steps
 - Regulation
 - ➢ Significance
- 3. Glycogenolysis
 - ➢ Define
 - ➤ Steps
 - ➢ Regulation

- ➢ Significance
- 4. Glucuronic acid
 - Glucuronic acid pathway and its importance
- 5. Glycogen synthesis
 - ➢ Define
 - ➢ Steps
 - ➢ Regulation
 - ➢ Significance
- 6. HMP shunt pathway
 - ➢ Define
 - > Steps
 - ➢ Regulation
 - ➢ Significance
- 7. GTT
 - ➢ Define
 - ➤ Types
 - ➢ Significance

8. Galactosemia

- ➢ Define
- Galactose metabolism
- Clinical significance
- 9. Endocrine regulation of blood sugar
 - Regulation-role of insulin and glycogen

10. Glycogenesis

- ➢ Define
- ➤ Steps
- ➢ Regulation
- ➢ Significance
- 11. Biosynthesis of lactose

Lactose metabolism

- 12. D-glucuronic acid formation and function
 - Glucuronic acid pathway and it's importance

13. Glucosuria

- ➢ Define
- ➤ Causes
- Clinical significance
- ➢ Lab diagnosis

14. Bisphosphoglycerate

- Rapaport Leubering cycle
- ➢ Significance
- 15. Phosphorfructokinase
 - Role in carbohydrate metabolism
- 16. Key enzymes of glycolysis
 - ➢ Enzymes, and it's role
- 17. Regulation of glycolysis
 - Enzymes and it's regulation
- 18. Role of insulin and adrenaline in carbohydrate metabolism.
 - ➢ Role
 - Clinical significance
- 19. Diabetes mellitus
- 20. Define
 - > Types
 - Courses
 - Complications
 - ➢ Lab diagnosis
- 21. HbA1C
 - ➢ Define

- Clinical significance
- ➢ Normal range
- Method for detection
- 22. Renal glycosuria
 - ➢ Define
 - ➢ Causes
 - ➢ Complications
 - Clinical significance
 - ➢ Lab diagnosis
- 23. Galactose metabolism
 - ➢ Define
 - > Steps
 - ➢ Enzymes
 - Galactosuria
 - > Galactosemia

24. Fructosuria

- ➢ Define
- ➤ Causes
- ➢ Complications
- Clinical significance
- ➢ Lab diagnosis
- 25. Fructose metabolism
 - ➢ Define
 - > Steps
 - ➢ Enzymes
 - ➢ Fructosuria

26. Hyperglycemia

- ➢ Define
- ➤ Causes
- Complications
- Clinical Significance

- ➢ Lab Diagnosis
- 27. Insulin
 - > Structure
 - Role In Metabolism
- 28. Fructose alanine cycle
 - ➢ Cycle
 - ➢ Steps
 - ➢ significance
- 29. Reducing sugars in urine
 - Different sugars
 - ➢ Significance
 - Conditions
 - Detection methods
- 30. Describe the metabolic fate of pyruvate
 - Importance of Pyruvate
 - Pyruvate transporter
 - > PDH complex
- 31. Describe the clinical manifestations and biochemical finding of Diabetic ketoacidosis.
 - > Definition
 - Clinical manifestations
 - Biochemical findings
- 32. Hormonal regulation of blood glucose
 - Insulin mechanism of action
 - Glucagon mechanism of action
- 33. Glycogen storage disorders
 - > Definition
 - > Types
 - Von Gierke's Disease
- 34. Oxidation of Pyruvate

- Acetyl CoA Formation
- > PDH complex
- 35. Key enzymes in Gluconeogenesis
 - Enumerate the enzymes with reaction

SHORT NOTES-3 MARK

- 1. HMP
- 2. GTT
- 3. Metabolic significance of HMP shunt pathway
- 4. Galactosemia
- 5. Endocrine regulation of blood sugar
- 6. Glycogenesis
- 7. Biosynthesis of lactose
- 8. D- glucuronic acid formation and function
- 9. Glucosuria
- 10. Polyol pathway of glucose
- 11. Aldolase B
- 12. Benedict's test
- 13. GCT
- 14. 2,3 BPG
- 15. Coris cycle
- 16. Von-Geirkes disease
- 17. Fructosuria
- 18. Lactose intolerance
- 19. Glycated Hemoglobin
- 20. Glucuronic acid pathway

PROTEINE AND AMINO ACID METABOLISM

ESSAY -10 MARKS

- 1. Digestion and absorption of proteins
 - ➢ Define
 - > Site
 - ➢ Enzymes
 - ➢ Diagram
 - ➢ Mechanism
- 2. Describe urea cycle. Add a note on clinical significance of estimation of urea
 - ➢ Define
 - ➢ Steps
 - ➢ Diagram
 - ➢ Regulation
 - ➢ Energetics
 - ➢ Significance
 - Estimation Of Urea
- 3. Discuss various methods of urea estimation and mention any one of them in detail
 - \triangleright various methods
 - ➤ principle
 - ➢ Reagents
 - > Procedure
 - ➢ Calculations
 - Significance of one method
- 4. Discuss the formation of creatinine. Mention the principle and method of estimation of creatinine
 - Formation of Creatinine
 - > Methods
 - > Principle
 - > Reagents
 - > Procedure

- ➤ Calculations
- ➢ Significance
- 5. Discuss various methods of total protein estimation and explain any one of them in detail.
 - Various Methods
 - > Principle
 - Reagents
 - > Procedure
 - ➤ Calculations
 - Significance of one method
- 6. Discuss various methods of albumin estimation and explain any one of them in detail.
 - Various methods
 - > Principle
 - ➢ Reagents
 - Procedure
 - Calculations
 - Significance of one method
- 7. Classify amino acids. Giving suitable examples
 - Classification- with examples
- 8. Write detail about one carbon metabolism with suitable examples
 - > One carbon generation and utilization with example
- 9. Name the Sulphur containing amino acid. Discuss the metabolism of methionine and add a note on homocystinuria.
 - List of Sulphur containing aminoacid
 - Methionine metabolism
 - ➢ Homocystinuria
- 10. Discuss the formation of ammonia in the human body. How is ammonia detoxified
 - Ammonia metabolism
 - Formation, detoxification, toxicity

- 11. Enumerate five inborn errors of amino acid metabolism. Add a note on urinary screening for inherited disorders of metabolism
 - List out inborn errors of aminoacid metabolism (Phenyketonuria, Alkaptonuria, MSUD, Hartnups disease, Albinism etc)
 - Urinary Screening tests
- 12. Explain the reaction by which ammonia is formed in the body and discuss how it is converted to urea and add a note on its regulation
 - Ammonia Formation
 - ➢ Urea cycle
 - Energetics and regulation
- Mention the source of urea. Mention the principle and procedure of the estimation of urea. What is the clinical significance of its estimation
 - ➢ Urea cycle
 - Principle and procedure-DAM method
 - Normal value and clinical significance

SHORT ESSAY-5 MARK

- 1. Transamination
 - ➢ Define
 - Biological significance
- 2. Homocystinuria
 - ➢ Define
 - ➤ Causes
 - Clinical significance
 - Lab diagnosis
- 3. Trans deamination
 - ➢ Define
 - > Pathway
 - ➤ Example

- 4. MSUD
 - ➢ Define
 - ➤ Causes
 - Clinical significance
 - ➢ Lab diagnosis
- 5. Detoxification of ammonia
 - Define urea cycle with diagram
- 6. Compounds formed from serine
 - Compounds formed from serine
- 7. Urea cycle
 - Define urea cycle with diagram
 - ➢ Energetic
 - ➢ Regulation
- 8. Metabolic functions of cysteine
 - Formation and it's role
- 9. Transmethylation reaction
 - ➢ Define
 - Steps
 - > Importance
- 10. GABA
 - ➢ Formation
 - Metabolism
- 11. Nitric oxide
 - > Chemistry
 - > Synthesis
 - Metabolic fate
 - Physiological action
- 12. Compounds formed from tyrosine
 - Melanin

- ➢ Catecholamines
- > Thyroxine
- 13. Aminoaciduria
 - ➢ Define
 - > Types
 - ➤ Causes
 - Significance
 - Lab diagnosis

14. Catecholamines

- ➢ Define
- > Synthesis
- Metabolism
- ➢ Role
- 15. Glycine metabolism
 - compound formed from glycine and it's role
- 16. creatinine synthesis
 - Creatine formation
 - clinical significance
- 17. compounds formed from serine
 - compound formed from serine and it's role
- 18. biological action of glutathione
 - Formation action
- 19. metabolic functions of cysteine
 - ➢ Formation
 - Biological action
- 20. Synthesis of creatinine and describe the methods of estimation
 - ➤ Steps
 - ➢ Regulation
 - ➢ Significance
 - ➢ Estimation

SHORT NOTES-3 MARKS

- 1. Name one carbone units
- 2. Name the important compound formed from glycine
- 3. creatinine synthesis
- 4. Phenylketonuria
- 5. Hartnups's disease
- 6. S-adenosyl methionine
- 7. Parkinsonism
- 8. Glutathione
- 9. Huntington's disease
- 10. Cystathionuria
- 11. VMA
- 12. Catecholamines
- 13. HIAA
- 14. Carcinoid syndrome
- 15. Ketogenic aminoacid
- 16. FIGLU
- 17. Glycine cleavage system
- 18. Glucose alanine cycle
- 19. Transulfuration
- 20. Jaffer's test
- 21. Polyamines
- 22. Alkaptonuria
- 23. Proteinuria
- 24. Ninhydrin test
- 25. NPN
- 26. A:G ratio
- 27. Albinism
- 28. Aminoacid pool
- 29. Deamination
- 30. Ammonia toxicity

LIPID METABOLISM

ESSAY-10 MARK

- 1. Describe the structure and functions of phospholipids.
 - > Structure
 - ➢ Functions
 - ➢ Importance
- 2. Discuss the saturated and unsaturated fatty acids of biological importance, along with their structure.
 - ➢ Define
 - Structure
 - Biological importance of fatty acids
- 3. Describe the structure of steroids. add note on the function of cholesterol
 - ➢ Define
 - Steroid structure
 - Cholesterol formation
 - ➢ Functions
- 4. Write detail about beta oxidation of palmitic acids, giving energetic
 - Beta oxidation
 - > Steps
 - ➢ Enzymes
 - ➢ Regulation
 - ➢ Energetics
- 5. Describe the beta oxidation of fatty acids. What are the coenzymes required for the beta oxidation and in which steps.
 - Beta oxidation
 - > Steps
 - Enzymes and co-enzymes
- 6. Write detail about the sources and fate of Acetyl CoA.
 - Sources and fate of a acetyl coa

- 7. Write detail about the denovo synthesis of the fatty acids. what are the coenzymes required, and how it regulated
 - Denovo synthesis
 - > Steps
 - ➢ Regulation
 - ➢ Enzymes
- 8. Define fatty liver ?explain the causes of fatty liver. Indicate how lipotropic factors can prevent fatty liver.
 - ➢ Define,
 - ➢ Causes
 - Complications
 - Actions of lipotropic factors
- What are the ketone bodies / explain the reactions leading to the formation of them. How are they utilized in the body.
 - ➢ Ketogenesis
 - ➤ Ketosis
- 10. Name the ketone bodies .give two conditions charecterized by excessive production of ketone bodies. Explain the metabolic derangements and consequences of ketosis.
 - ➢ Starvation,
 - > DKA
 - ➢ Ketonebody formation
 - Complications of ketosis
- 11. Discuss the formation and fate of cholesterol.
 - Cholesterol metabolism
- 12. Enumerate the lipoproteins and briefly explain their function. Describe the methods for estimation of cholesterol
 - Lipoprotein classification
 - ➢ Function
 - Cholesterol estimation
- 13. Classify lipoproteins. Describe the metabolism of chylomicrons.

- Lipoprotein classification
- ➢ Function
- Metabolism of chylomicrons
- 14. Discuss in detail the sampling, storage and estimation of lipid profile parameters.
 - ➢ Sampling
 - Storage of sample
 - Estimation criteria
 - Different estimation methods
- 15. Classify lipoproteins. Describe briefly on lipoprotein metabolism
 - Lipoprotein classification and function
 - > Chylomicron, VLDL, LDL and HDL metabolism

5 MARK – SHORT ESSAY

- 1. Glycolipids
 - ➢ Define
 - > Role
 - ➢ Examples
- 2. Essential fatty acids
 - ➢ Define
 - Biological importance
- 3. Rancidity
 - ➢ Define
 - Biological importance
- 4. Iodine number
 - ➢ Define
 - Biological importance
- 5. Phosphatidyl inositol
 - ➢ Define
 - Zxdcgkio Biological importance

- 6. Sphingomyelins
 - ➢ Define
 - Biological importance
- 7. Rate limiting enzymes of fatty acid biosynthesis
 - ➢ Rate limiting enzymes and it's role
- 8. Carnitine role in the fatty acid synthesis
 - ➢ carntine and its role
- 9. Oxidation of odd chain fatty acids
 - Define
 - > Steps
 - ➢ Importance
- 10. Metabolism of propionyl CoA
 - ➢ fate of propionyl CoA
- 11. Refsum's disease
 - ➢ Define
 - ➤ Causes
 - Clinical features
- 12. Alpha oxidation
 - ➢ Define
 - > Site
 - > Steps
 - > Importance
- 13. Dicarboxylicaciduria
 - ➢ Define
 - ➢ Causes
 - clinical features
- 14. Effect of insulin on lipolysis
 - ➢ Role of insulin

- 15. Fatty liver
 - ➢ Define
 - ➤ Causes
 - Complications
 - clinical features

16. Lipotropic factors

> Define the role with suitable examples

17. Ketosis

- ➢ Define
- ➢ Site
- > Steps
- ➢ Importance
- 18. Ketogenesis
 - ➢ Define
 - Site
 - > Steps
 - > Importance
- 19. Biologically important compounds derived from the cholesterol
 - Define detail with examples
- 20. HMG CoA reductase
 - Role and it's importance
- 21. Regulation of cholesterol synthesis➢ Types of regulation and it's action
- 22. key enzymes of cholesterol biosynthesis
 - Enzymes and it's action
- 23. Apo B-100
 - Define
 - ➤ role

- 24. Chylomicrons
 - ➢ Define
 - > Types
 - Biological role and it's metabolism

25. PUFA

> PUFA and its biological importance

26. Eicosanoids

- Role with suitable examples
- 27. Prostaglandins
 - > Role with suitable examples

28. Leukotrienes

- > Role with suitable examples
- 29. Bile acids
 - Biosynthesis, examples, role
- 30. Apolipoproteins
 - Role with suitable examples
- 31. Phospholipids
 - > Role with suitable examples
- 32. Sphingolipids
 - Role with suitable examples
- 33. Cholesterol estimation
 - > Method
 - > Principle
 - > Procedure
 - Clinical significance
- 34. Lipid storage disease
 - > Types 'enzyme defect and it's role

- 35. Catecholamines.
 - ➢ Define
 - ➤ Classify
 - ➢ Functions
- 36. HDL metabolism.
 - > Definition
 - > Steps
 - ➢ Regulation
 - ➢ Significance
- 37. Beta oxidation of palmitic acid
 - ➢ Definition
 - ➢ Steps
 - ➢ Regulation
 - ➢ Significance
- 38. LDL Metabolism
 - Synthesis, Apoproteins
 - Metabolism
 - Function and Significance
- 39. Atherosclerosis
 - > Definition
 - ➢ Risk factors
 - Clinical significance
 - Laboratory investigations
- 40. Classify eicosanoids, Enumerate the functions of prostaglandins
 - Classification
 - Functions of prostaglandins
- 41. Reverse cholesterol transport
 - HDL metabolism
- 42. Hyperlipidemia

- ➢ Definition
- > Types in detail
- 43. Any five screening tests for inborn errors of metabolism
 - > Inborn errors
 - Screening tests

SHORT NOTES- 3MARKS

- 1. Structure of cholesterol
- 2. Regulation of cholesterol
- 3. Classification of lipoproteins
- 4. Apo-lipoproteins
- 5. BAD cholesterol
- 6. GOOD- cholesterol
- 7. Free fatty acids
- 8. Bile acids
- 9. PUFA
- 10. EFA
- 11. Prostaglandins
- 12. Leukotrienes
- 13. Tay-sachs disease
- 14. Gaucher's disease
- 15. Niemann-pick disease
- 16. Obesity
- 17. Lipotropic factors
- 18. Trans fatty acids
- 19. Sphingolipids
- 20. Fatty acid synthase complex
- 21. Name 6 risk factors of coronary artery diseases

INTER RELATION BETWEEN THE METABOLISM OF CARBOHYDRATE, LIPIDS, PROTEINE

ESSAY-10 MARK

- 1. Discuss the formation of Acetyl coA from pyruvate. How is acetyl coA is further metabolized in the citric acid cycle.
 - Formation of pyruvate
 - Citric acid cycle, and it's significance
- 2. Give an account of the citric acid and explain why it is called the common terminal metabolic pathway
 - Citric acid cycle and it's significance
- 3. Write the steps of citric acid cycle, what is the biological significance of this cycle
 - Citric acid cycle and it's significance
- 4. Describe the reactions of the citric acid cycle , how many ATP molecules are generated per molecule of acetyl coA entering the cycle
 - Citric acid cycle, it's significance
 - ➢ Energetics
- 5. Explain the amphibolic nature of citric acid cycle.
 - Citric acid cycle and it's significance
- 6. Define oxidative phosphorylation, Explain the chemiosmotic theory
 - Define, oxidative phosphorylation,
 - Substrate level phosphorylation
 - Chemiosmotic theory with suitable diagram
- 7. Write the membrane of the electron transport chain in the order of redox potentials, and show the steps where ATP is synthesized.
 - ➢ ETC-outline
 - > Explain different components with suitable diagram
 - > Steps in ATP synthesis

- 8. Define the oxidative phosphorylation, and add short note about substrate level phosphorylations.
 - Define, oxidative phosphorylation,
 - Substrate level phosphorylation with examples

SHORT ESSAY-5 MARK

- 1. Substrate level phosphorylation
 - > Define and explain with examples
- 2. Regulations of ATP synthesis
 > Define ATP synthesis, steps and its regulation
- 3. Site specific Inhibitors of Electron transport chain
 - Define and explain with diagram
- 4. Chemiosmotic theory
 - Define with diagram
- 5. Co-enzymes Q
 - ➢ Define
 - functions and significance
- 6. ATP synthase complex
 - Explain with definition and suitable diagram
- 7. Electron transport chain
 - Define, stages ,significance
- 8. ATP synthase complex
 - Explain with definition and suitable diagram
- 9. Organization of electron transport chain (Diagram only)
 - Draw the diagram of ETC

SHORT NOTES-3 MARKS

- Cytochrome oxidase
 Role and importance
- 2. Cytochrome
 - Define with suitable examples
- 3. Uncouplers of electron transport chain
 - Define with suitable examples
- 4. Inhibitors of ETC
 - Define with suitable examples
- 5. Energy rich compounds
 - Define with suitable examples
- 6. Oxidative phosphorylations
 - Define with suitable example
- 7. Substrate level phosphorylation
 - Define and explain with examples

NUCLIC ACID METABOLISM

ESSAY-10 MARK

- 1. Write detail about biosynthesis of purine metabolism
 - ➢ Define
 - ➢ Requirements
 - Types and steps of synthesis
- 2. Write detail about denovo synthesis of purine
 - ➢ Define
 - ➢ Site
 - Requirements
 - > Types, and steps of synthesis

- 3. Write detail about biosynthesis of pyramidine metabolism
 - ➢ Define
 - > Site
 - > Requirements
 - > Types, and steps of synthesis
- 4. Write detail about catabolism of purine, add a short note about uric acid.
 - ➢ Define
 - ➢ Site
 - ➢ Steps
 - > Gout
 - Uric acid detection
- 5. Catabolism of purine and write a note about gout
 - ➢ Define
 - Site
 - > Steps
 - > Gout
 - Uric acid detection

SHORT ESSAY-5MARK

- 1. Gout
 - ➢ Define
 - > Types
 - Catabolism of purine
 - ➢ Uric acid detection

2. Uric acid

- Catabolism of purine
- Uric acid detection
- > Gout
- ➢ Normal range

- 3. Denovo synthesis of pyramidine
 - ➢ Define
 - ➢ Site
 - ➢ Steps
- 4. Denovo synthesis of purine
 - ➢ Define
 - ➢ Site
 - ➤ Steps
- 5. Salvage pathway of purine
 - ➢ Define
 - > Site
 - ➢ Steps
- 6. Disorders of purine metabolism
 - ➢ Define
 - > Clinical features
- 7. Disorders of pyramidine metabolism
 - Define, clinical features
- 8. Lesch-nyhan syndrome
 - ➢ Define
 - ➢ Clinical features,
 - ➢ Classification
 - ➤ Lab diagnosis

9. Orotic aciduria

- ➢ Define
- ➢ Clinical features
- Classification, lab diagnosis

SHORT NOTES -3 MARK

- 1. Gout
- 2. Denovo synthesis of pyramidine
- 3. Uric acid
- 4. Disorders of pyramidine metabolism
- 5. Disorders of purine metabolism
- 6. Oroticaciduria
- 7. Leschnyhan syndrome
- 8. Salvage pathway of purine
- 9. Denovo synthesis of purine

VITAMINES AND CO-ENZYMES

FAT SOLUBLE VITAMINE

ESSAY-10 MARK

- Describe sources, biochemical functions, RDA and deficiency manifestations of Vitamin A
 - ➢ Sources
 - Biochemical functions
 - ≻ RDA
 - Deficiency manifestations
- 2. Describe sources ,biochemical functions , RDA, and deficiency manifestations of Vit
 - .D
 - Sources
 - Biochemical Functions
 - ≻ RDA
 - Deficiency Manifestations
- 3. Describe sources, biochemical functions, RDA, and deficiency manifestations of Vit.E
 - ➤ Sources
 - Biochemical Functions

- ≻ RDA
- Deficiency Manifestations
- 4. Describe sources ,biochemical functions , RDA,and deficiency manifestations of Vit .K
 > Sources
 - Biochemical Functions
 - > RDA
 - Deficiency Manifestations
- Describe about the dietary sources, RDA, biochemical functions and deficiency manifestations of vit.B₁₂
 - ➢ Sources,
 - > RDA
 - Biochemical Functions
 - Deficiency Manifestations
- 6. Escribe about the dietary sources, RDA, biochemical functions and deficiency manifestations of vit.B₉ (folic acid)
 - Sources
 - > RDA
 - Biochemical functions
 - Deficiency manifestations
- 7. Write the dietary source, daily requirement, biological functions and deficiency manifestations of vitamin C
 - Sources
 - > RDA
 - Biochemical functions
 - Deficiency manifestations

SHORT ESSAY-5 MARKS

- 1. Sources and daily requirements of vitamin A
 - Sources
 - Daily Requirements

➢ Role

- 2. Functions of vitamin A
 - ➤ Sources
 - Daily Requirements
 - ➢ Role Of Vit A

3. Visual cycle

- ➢ Role Of Vitamin A
- Diagrammatic Representation Of Visual Cycle
- ➢ Sources
- 4. Hypervitaminosis A
 - ➤ Sources
 - ► RDA,
 - Characters Of Hypervitaminosis
- 5. Antioxidant vitamin
 - ➢ Vit E & Vit A Sources
 - Biochemical Functions
 - ► RDA
 - Deficiency Manifestations
- 6. Functions of vitamin D
 - ➤ Sources
 - Biochemical functions
- 7. Activations of vitamin D
 - ➢ Role
 - ➤ Activation
 - > RDA
- 8. Renal rickets
 - Define
 - > Types
 - Clinical Significance

- 9. Tocopherol
 - ➢ Define
 - ➢ Forms
 - Vitamin A
 - Important, Role In Vision
- 10. Biological role of vitamin k
 - Vitamin K Sources
 - Role In Coagulation
 - ➢ Vit K Cycle
- 11. Gama carboxylic reactions
 - Vitamin K Sources
 - ➢ Role In Coagulation
 - ➢ Vit K Cycle
- 12. What is the normal daily requirement of Vitamin A & vitamin D and it's role
 - > Daily Requirement Of Vitamin A & Vitamin D
 - Biochemical Role
- 13. Rickets
 - Types ,Clinical Significance
- 14. Vit. K cycle
 - > Explain, Vitamin K Cycle with Diagram and It's Role
- 15. Co enzyme role of niacin
 - > Co enzymes
 - ➤ Functions
 - > Significance
- 16. Biochemical functions of vitamin A
 - ➢ Vitamin A
 - ➢ Functions
 - ➢ Significance

SHORT NOTE -3MARK

- 1. Sources and daily requirements of vitamin A
- 2. Functions of vitamin A
- 3. Visual cycle
- 4. Hypervitaminosis A
- 5. Antioxidant vitamin
- 6. Functions of vitamin D
- 7. Activations of vitamin D
- 8. Vitamin deficiency
- 9. Renal rickets
- 10. Tocopherol
- 11. Biological role of vitamin k
- 12. Gama carboxylic reactions
- 13. What is the normal daily requirement of Vitamin A & vit .D
- 14. Rickets
- 15. Vit. K cycle
- 16. Biological role of vitamin A
- 17. Wald's visual cycle
- 18. Dark adaptation mechanism
- 19. Colour blindness
- 20. RDA of vitamin A
- 21. Sunshine vitamin
- 22. Vitamin D is a prohormone
- 23. Calcitriol
- 24. Effect of vit.D
- 25. Biochemical role of vit E
- 26. Renal rickets
- 27. Active forms of vit. A
- 28. Biochemical role of vit K

WATER SULUBLE VITAMINES

ESSAY-10 MARK

- Describe about the dietary sources, RDA, biochemical functions and deficiency manifestations of vitamin C
 - Sources
 - ≻ RDA
 - Biochemical functions
 - Deficiency manifestations

SHORT ESSAY-5 MARK

- 1. Co-enzyme actions of thiamine
 - ➢ Sources,
 - Physiological Role
 - Deficiency Manifestations
- 2. Metabolic role of riboflavin
 - Co-enzymes forms of riboflavin
 - Riboflavin deficiency
 - > Significance
- 3. Deficiency of folic acid
 - Deficiency manifestations
 - ➢ Lab diagnosis,
 - ➤ Sources

4. PLP

- ➢ Co-enzyme forms
- > Role
- Deficiency manifestations
- ➤ Sources

- 5. Co-enzyme action of biotin
 - ➢ Sources,
 - Physiological Role
 - Deficiency Manifestations
- 6. Deficiency of Vitamin B_{12}
 - ➢ Folate Trap
 - Megaloblastic Anaemia
 - Demyelination
 - > Achlorhyria
 - Lab Diagnosis
 - > Treatment
- 7. Biochemical functions of Vitamin B₁₂
 - ➢ Bio chemical role,
 - ➤ Sources,
 - Deficiency manifestations
- 8. Absorption of Vitamin B₁₂
 - Detail About Forms,
 - > Absorption
 - ➤ Transport
 - ➢ Storage
- 9. Niacin deficiency
 - Detail about pellagra
 - ➤ Causes,
 - Sources of niacin
- 10. Biochemical functions of folic acid
 - Co-enzymes role of folic acids
 - Deficiency manifestations
 - Transmethylation reaction
- 11. Biochemical functions of vitamin c
 - Biochemical Role
 - Deficiency Manifestations

12. Pathothenic acid

- > Structure
- ➢ Co-Enzyme Activity
- ➢ Sources
- Deficiency Manifestations

13. Niacin

- ➢ Structure,
- ➢ Co-enzyme activity
- ➢ Sources
- Deficiency manifestations

14. Thiamine

- > Structure
- ➢ Co-Enzyme Activity
- ➢ Sources
- Deficiency Manifestations

15. Biotin

- > Structure
- ➢ Co-enzyme activity
- ➤ Sources,
- Deficiency manifestations

16. Biotin antagonist

- Detail about biotin
- ➢ Avidine
- Deficiency of biotin
- ➢ Sources

17. Vitamin c

- ➢ Structure
- ➢ Co-enzyme activity
- ➤ Sources,
- Deficiency manifestations

- 18. Pellagra
 - Deficiency Manifestations,
 - > Causes
 - Sources
 - ≻ RDA
- 19. Estimation of Vitamin C
- 20. Different methods
- 21. Principle, Procedure
- 22. Interpretation
- 23. Assessment of Vitamin B12
 - Method of estimation
 - Principle, Procedure
 - > Interpretation
- 24. Biochemical functions of Niacin
 - Co-Enzymes Forms Of Niacin
 - Niacin Deficiency
 - ➢ Significance
- 25. Beriberi
 - Deficiency Manifestations
 - > Types, And It' Significance

SHORT NOTE-3 MARKS

- 1. Beriberi
- 2. Wernicke korsakoff syndrome
- 3. Infentile beriberi
- 4. Pellagra
- 5. Co-enzyme form of PLP
- 6. Structure of pathothenic acids
- 7. Co-enzyme A
- 8. Gopalans burning foot syndrome

- 9. Structure of biotin
- 10. Carboxylation reactions
- 11. Anti egg white injury factors
- 12. Transmethylation reaction
- 13. Folate trap
- 14. Macrocytic anaemia
- 15. FIGLU excretion test
- 16. Folate antagonist
- 17. Intrinsic factor
- 18. Megaloblasticanaemia
- 19. Schilling test
- 20. Biochemical functions of vitamin C
- 21. Scurvy

NUTRITION

ESSAY -10 MARK

- 1. Define BMR, write detailed about factors affecting BMR & determinations of BMR.
 - Define ,factors, detection

SHORT ESSAY-5 MARK

- 1. BMR
 - ➢ Define
 - Detection
 - ➤ Factors affecting
- 2. Nutritional importance &caloric value of carbohydrate
 - Define, and its importance
- 3. Respiratory quotient
 - Define
 - Factors affecting
 - Clinical aspects

- 4. Role of carbohydrate in diet
 - ➢ Define
 - ➢ Role
 - ➢ Itsimportants
- 5. Role of lipids in diet
 - ➢ Define
 - ➢ Role
 - Pufa & itsimportants
- 6. Glycaemic index
 - ➢ Define,
 - ➢ Factors affecting
 - ➤ Calculation
 - > Types with examples
- 7. Protein energy malnutrition (PEM)
 - ➢ Define,
 - > Types with clinical features

8. Kwashiorkor

- ➢ Define
- Clinical features
- 9. Marasmus
 - ➢ Define
 - Clinical features

SHORT NOTE-3 MARK

- 1. Role of carbohydrate in diet
- 2. Role of lipids in diet
- 3. Glycemic index
- 4. Protein energy malnutrition (PEM)
- 5. Kwashiorkor

- 6. SDA
- 7. Benedict-Roth metabolism apparatus
- 8. Body mass index
- 9. Marasmus

URINE, CSF, OTHER BODY FLUIDS

ESSAY-10 MARK

- 1. Write detail about collection, physical, chemical examination of CSF.
 - ➢ Site
 - Collection
 - > Physical
 - > Chemical examination of CSF and clinical significance
- 2. Normal and abnormal constituents of urine
 - > Define detailed about each one with significance
- 3. Physical and chemical examinations of urine
 - Physical, chemical examinations of urine
- 4. Enumerate three organic constituents of urine and describe the formation and estimation of any one
 - List out the constituents
 - Formation in detail
 - Estimation methods

SHORT ESSAY -5 MARK

- 1. Synovial fluid
 - ➢ Site
 - ➢ Function
 - Physical and chemical examination,
 - Normal composition
 - Clinical significance

2. Pleural fluid

- ➢ Site
- ➢ Function
- Physical and chemical examination
- Normal composition
- Clinical significance
- 3. Pericardial fluid
 - ➢ Site
 - ➢ Function
 - Physical and chemical examination,
 - ➢ Normal composition,
 - Clinical significance

4. Peritoneal fluid

- ➢ Site
- ➢ Function
- Physical and chemical examination
- Normal composition
- Clinical significance

5. Amniotic fluid

- ➢ Site, function
- Physical and chemical examination
- ➢ Normal composition,
- Clinical significance

6. CSF

- ➢ Site
- ➢ Function
- Physical and chemical examination
- Normal composition
- Clinical significance
- 7. Exudates and transudate
 - ➢ Define
 - Factors affecting

- 8. Normal organic constituents of Urine
 - List out organic constituents
 - Detection methods
- 9. Detection of Inorganic and organic constituents of urine
 - List out organic constituents
 - Detection methods
- 10. Components of CSF in health and disease
 - > Composition of CSF in normal and in clinical conditions
- 11. Blood sampling
 - > Different blood sampling methods in detail
- 12. 24 hour urine sampling
 - Method of collection with precautions
 - Preservatives

SHORT NOTES -3 MARK

- 1. Benedicts test
- 2. Heat and acetic acid test
- 3. Fouchets test
- 4. Schales and schales method
- 5. Ehrlichs test
- 6. Hay's test
- 7. Specific gravity of urine
- 8. Urinometer
- 9. Benzidine test
- 10. Biuret test
- 11. Mucine clot test
- 12. Lumbar puncture
- 13. Physical examination of urine
- 14. Chemical examination of urine