4 TH YEAR BSc. MLT

BIOCHEMISTRY-IV

MINERAL METABOLISM

ESSAY-10MARKS

- 1. Describe the metabolism of calcium and Phosphorus?
 - ➢ Source
 - Requirement
 - > Absorption
 - ➢ Function
 - Reregulation
 - Clinical significance
- 2. Discuss the maintenance of serum calcium level?
 - > Hormonal regulation-parathyroid hr and calcitonin, vit D)
- 3. Describe the factors which favors the absorption of iron from the intestine
 - ➢ Mechanism,
 - > Factors causing increased and decreased absorption
- 4. Describe the metabolism of calcium?
 - ➢ Source
 - Requirement
 - > Absorption
 - > Function
 - > Regulation
 - clinical condition
- 5. Describe the iron absorption in the intestinal tract?
 - ➢ Factors influencing,
 - Mucosal block theory
- 6. Give an account of the dietary sources, absorption and utilization of iron?
 - ➢ source

- > Requirement
- > Absorption
- ➢ Function
- ➢ Regulation
- Clinical condition
- 7. Describe iron metabolism
 - ➢ Source
 - > Requirement
 - > Absorption
 - ➢ Function
 - ➢ Regulation
 - Clinical condition
- 8. Describe the absorption, transport and method of iron?
 - ➢ Source
 - > Requirement
 - > Absorption
 - ➢ Function
 - ➢ Regulation
 - Clinical condition
- 9. Enumerate the factors that influence the absorption of calcium. Give briefly how blood calcium levels are regulated?

≻ PTH

- > Calcitonin
- > Vit.D
- Calcium homeostasis
- Amino acids
- Acidity
- 10. Describe iron metabolism in the body. Explain estimation of serum iron
 - ➢ Source
 - Requirement
 - > Absorption

- ➢ Function
- ➢ Regulation
- Clinical condition
- Estimation methods
- 11. Describe the regulation of blood calcium . what are the methods for the estimation of blood calcium
 - Metabolism
 - ➢ Regulation
 - Estimation methods

SHORT NOTES -5 MARKS

- 1. Calcium estimation and metabolism?
 - > Method
 - > Principle
 - Procedure
 - > Interpretation
 - Metabolism

2. Phosphurus

- > Requirement
- ➢ Source
- > Function
- ➢ Normal range
- Clinical significance
- 3. Regulation of blood calcium level
 - ➢ Vit.D
 - ≻ PTH
 - ➤ Calcitonine
 - Paracalcitonine
- 4. Factors affecting absorption of calcium
 - ➢ Vit.D

- ≻ PTH
- > Acids
- ➤ Acidity
- 5. Trace elements
 - ➢ Source
 - Requirement
 - ➢ Functions
 - > Normal range
 - Clinical conditions
- 6. Homoeostatic mechanism of calcium?
 - ➢ Vit.D
 - ➢ PTH,
 - Calcitonine
 - Paracalcitonine
- 7. Iron absorption
 - Factors influencing absorption
 - Mucosal block theory

8. Ferritin

- > Define
- ➢ Action
- Importance)
- 9. Tranferrin
 - > Define
 - > Action
 - ➢ Importance
- 10. Iron metabolism
 - ➢ Source
 - Requirement
 - > Absorption
 - ➢ Function

- ➢ Regulation
- Clinical condition
- 11. Metabolic role of copper and zinc

> Functions

12. Metabolic role of Na,Ca and Fe in human body

➤ Functions

- 13. Metabolic role of zinc and selenium
 - ➢ Functions
- 14. Iron containing compound in the human body
 - ≻ Hb
 - ≻ Mb
 - ≻ Cyt
 - ➢ Catalase et
- 15. Estimation of Phosphurus
 - Method name
 - Principle procedure
 - ➢ Interpretation
 - > Metabolism

16. Estimation of calcium

- Method name
- > Principle
- Procedure
- ➢ Interpretation
- ➢ Metabolism

17. Sodium

- ➤ Functions
- ➢ Importance
- Normal level
- Clinical conditions

18. Pottassium

- ➢ Functions
- ➢ Importance
- Normal level
- Clinical condition

19. Wilsons Disease

- ➢ Define
- ➤ Causes
- ➢ Features
- Lab investigation
- 20. Hypothyroidism
 - ➢ Define
 - ➤ Causes
 - ➢ Features
 - Lab investigation
- 21. Estimations and clinical significance of serum phosphorus
 - ➢ Introduction
 - Different methods
 - > Principle
 - > Procedure
 - ➢ Significance

22. Copper metabolism and disorders associated with it

- Source
- > Requirement
- > Absorption
- ➢ Function
- ➢ Regulation
- Clinical condition
- 23. Estimation of serum electrolytes
 - Serum electrolytes
 - Estimation methods

- 24. Estimation of serum sodium
 - Sodium introduction
 - Estimation methods
- 25. Regulation of iron absorption
 - Iron introduction
 - Regulation mechanisms
- 26. Estimation of serum potassium
 - Method name
 - > Principle
 - > Procedure
 - ➢ Interpretation
 - ➢ Metabolism

ANSWER BRIEFLY -3 MARKS

- 1. Zinc
- 2. Copper
- 3. Iodine
- 4. Magnesium
- 5. Sodium
- 6. Potassium
- 7. Fiskey and subbarow method
- 8. OCPC method
- 9. Hyperkalemia
- 10. Addisons Disease
- 11. Chlorine
- 12. Hyper calcemia
- 13. Hypocalcemia
- 14. Hormonal regulation of Calcium
- 15. Hyper phosphataemia
- 16. Hypo Phosphataemia
- 17. Role of Sulphur

- 18. Storage of iron
- 19. TIBC
- 20. Ferritin
- 21. Haemosiderin
- 22. Transferrin
- 23. Haemoprotein
- 24. Diatery source Of iron and its role
- 25. Mucosal block theory
- 26. Iron deficiency Anaemia
- 27. Functions of Copper
- 28. Functions of magnesium
- 29. Flourosis
- 30. Sources and role of zinc
- 31. Selenium toxicity
- 32. Test meals
- 33. Hyper chlorhydria
- 34. Achlorhydria
- 35. Achlia gastric
- 36. Histamine stimulation tests
- 37. Hollanders tests
- 38. Phosphate buffer
- 39. Chloride estimation
- 40. Estimation of Zn
- 41. Estimation of iodine
- 42. Estimation of copper
- 43. Biochemical role of copper
- 44. Biochemical role of iodine
- 45. Estimation of iron
- 46. Biochemical role of magnesium
- 47. What is normal potassium level and mention two features of hypokalemia
- 48. What is the normal level in serum 1.sodium2. potassium 3.calcium
- 49. Biochemical role of Zn

FUNCTION TESTS

ESSAYS-10MARKS

- 1. Classify kidney function tests, Describe the urea clearance test in details
 - Explain with classification
 - Clearance-define
 - > Method,
 - > Procedure,
 - ➢ Normal range,
 - Clinical importance
- 2. Describe the Renal function tests
 - Explain with classification
- 3. Define clearance and Describe the urea clearance
 - ➢ Define
 - > Method
 - > Procedure,
 - ➢ Normal range
 - Clinical importance
- 4. Describe Gastric function tests
 - Explain with classification
 - Collection
 - Clinical significance
- 5. Discuss about collection of gastric juice. Add a note about fractional test meal
 - Method name
 - > Procedure
 - Requirements
 - Explain with types of fractional test meal
- 6. Describe the liver function tests
 - > Introduction
 - Classification
 - Explanations and interpretations

- Clinical significance
- 7. Enumerate the various Liver function tests.add a notes on liver specific enzymes
 - Introduction
 - Classification
 - explanations and interpretations
 - Clinical significance
- 8. Enumerate the various Liver function tests.add a note on detoxification functions of liver
 - Introduction
 - Classification
 - Explanations and interpretations
 - Clinical significance
- 9. Describe about thyroid function tests.add a notes on Thyroid hormones
 - Introduction
 - Classification
 - Synthesis
 - Interpretations
 - Clinical significance
- 10. Discuss in detail the test to assess glomerular function of the kidney
 - Classify and explain
 - Clinical significance
- 11. Enumerathe the liver function tests and explain their clinical significance
 - Introduction
 - Classification
 - Explanations and interpretations
 - Clinical significance
- 12. Describe TFT and the diseases associated with its dysfunction
 - Introduction
 - Classification
 - Explanations and interpretations
 - Clinical significance

13. Describe TFT

- ➢ Introduction
- Classification
- Explanations and interpretations
- Clinical significance

SHORT NOTES-5MARKS

- 1. Chronic hepatitis
 - Classification
 - ➢ Causes
 - Lab investigation
 - Clinical manifestations
- 2. Liver Cirrhosis
 - ➤ Causes
 - Lab investigation
 - Clinical manifestations

3. Cholestasis

- > Types
- > Causes
- Lab investigation
- Clinical manifestations
- 4. Vanden Bergh Test
 - Direct& indirect test principle
 - > Reagents
 - > Procedure
 - > Interpretations
- 5. Hippuric acid test
 - ➤ Types
 - > Method
 - > Interpretations

- 6. Detoxification Functions of liver
 - > Types
 - > Method
 - > Interpretations
- 7. BSP retention test
 - > Principle
 - ➢ Method
 - ➢ Interpretation
- 8. Direct and indirect vandenBergh test
 - Direct& indirect test principle
 - ➢ Reagents
 - > Procedure
 - > Interpretations
- 9. Liver Enzymes
 - ➤ Names
 - > Significance
 - ➢ Normal range
 - Clinical conditions
- 10. Jaundice
 - ➤ Types
 - Causes
 - Lab investigation
 - Clinical manifestations

11. SGOT

- > Role
- Clinical significance
- Normal level
- ➢ Estimation
- 12. Estimation of Liver Enzymes
 - Method name

- > Principle
- > Procedure
- Clinical significance
- 13. Renal function test
 - Classifications
 - > Principle
 - > Method
 - > Interpretation
- 14. Urea clearance
 - > Principle
 - > Method
 - ➢ Normal range
 - ➢ Interpretation
- 15. Creatinin clearance
 - > Principle
 - > Method
 - Normal range
 - Interpretation
- 16. GFR
 - > Define
 - Normal range
 - Importance
- 17. Tubular function test
 - > Define
 - > Types
 - > Methods
 - ➢ Interpretations
- 18. Inulin clearance test
 - Importance and procedure
 - ➢ Interpretations

- 19. Endogenous clearance testtest
 - > Types
 - Importance and procedure
 - Interpretations
- 20. Test for Renal blood flowtest
 - > Types
 - Importance and procedure
 - > Interpretations
- 21. Test for tubular functiontest
 - ➤ Types
 - Importance and procedure
 - > Interpretations
- 22. Concentration and Dilution test
 - ➤ Types
 - Importance and procedure
 - Interpretations

23. PSP test

- Importance and procedure
- ➢ interpretations

24. Gastric function test

- > Туре
- Importance and procedure
- Interpretations

25. Malabsorption

- ➢ Define
- Causes
- Clicical significance
- > Tests
- 26. Test for occult blood in Faeces

- > Types
- > Method
- > Principle
- > Procedure
- Interpretations

27. Schilling test

- ➤ Types
- > Method
- > Principle
- > Procedure
- > Interpretations

28. D-xylose absorption test

- ➤ Types
- > Method
- > Principle
- > Procedure
- > Interpretations

29. Faecal fat estimation

- > Types
- Method
- > Principle
- > Procedure
- Interpretations
- 30. Examination of resting content
 - Procedure
 - Interpretations

31. Free and total acidity

- ➢ Define
- ➢ Estimations
- > Graph
- ➢ Interpretation

- 32. Stimulation test
 - > Types
 - > Method
 - > Principle
 - > Procedure
 - > Interpretations
- 33. Histamine stimulation test
 - > Principle
 - > Procedure
 - > Interpretations
- 34. Augmented stimulation testtest
 - > Principle
 - > Procedure
 - > Interpretations
- 35. Pentagastrin test
 - > Principle
 - Procedure
 - Interpretations
- 36. Tubeless Gastric analysis
 - > Types
 - > Principle
 - > Procedure
 - Interpretations
- 37. Alcohol Fractional Test mealtest
 - > Principle
 - Procedure
 - > Interpretations
- 38. Test for adrenal disfunction
 - ➢ Introduction
 - Different test

- > Procedure
- > Principle
- > Significance
- 39. Test for endocrine pancreatic function
 - ➢ Introduction
 - Function tests
 - Significance
- 40. Gonadal function tests
 - ➢ Introduction
 - Function tests
 - > Significance
- 41. Test for gastric function
 - ➢ Introduction
 - Function tests
 - ➢ Significance
- 42. Liver enzyme profile in obstructive jaundice
 - ➢ Enzymes
 - Clinical significance
- 43. Pancreatic digestive enzymes
 - > Enzymes
 - Clinical significance
- 44. Estimation of total acidity and titrable acidity
 - > Introduction
 - Estimation methods
 - Clinical significance
- 45. Biochemical assay of lung maturity
 - Tests classification and explanation
- 46. HDN
 - ➢ Introduction

- ➤ Causes
- > Symptoms
- > Tests
- Treatment

47. TFT

- ➢ Introduction
- Function tests
- ➢ Significance
- 48. Enzyme profile for liver function
 - ➢ Enzymes
 - Clinical significance
- 49. Laboratory investigations of jaundice
 - > Tests
 - Clinical significance
- 50. Laboratory investigations of thyroid dysfunction
 - > Tests
 - Clinical significance
- 51. Collection of gastric juice
 - > Introduction
 - Indications of GFT
 - Gastric juice
 - Collection tubes and procedures
 - Precuations
- 52. Micro albuminuria
 - Introduction
 - Causes
 - Symptoms
 - > Tests
- 53. Laboratory investigations of iron deficiency anemia

- Tests and significances
- 54. Methods to estimate serum bicarbonate
 - > Methods
 - Interpretations
- 55. Describe the causes and laboratory diagnosis of haemolytic jaundice
 - Jaundice introduction
 - Causes
 - > Tests
 - Interpretation
- 56. Synthesis of thyroid hormones and methods available for its estimation
 - Thyroid hormones significance
 - > Synthesis
 - > Tests
 - Interpretations
- 57. Laboratory findings in prehepatic, hepatic and post hepatic jaundice
 - ➢ Jaundice
 - > Tests
 - > Interpretation
- 58. Significance of specific gravity of urine in renal function tests
 - > RFT introduction
 - Specific gravity
 - > Tests
 - Interpretations
- 59. Tests to assess hepatic injury
 - Tests and interpretations
- 60. Hypothyroidism
 - Introduction
 - ➢ Causes
 - > Symptoms

Tests and significance

ANSWER BRIEFLY-3MARKS

- 1. Schilling test
- 2. Vandenbergh test
- 3. Specific gravitytest
- 4. Test for female infertility
- 5. Three characteristic findings in obstructive jaundice
- 6. Sweat chloride test
- 7. Specific gravity of urine
- 8. D xylulose absorption test
- 9. Tests for occult blood in faeces
- 10. Urinary findings in different jaundices
- 11. HDN
- 12. Hyperthyroidism
- 13. Tests for occult blood in faeces
- 14. Test to asses fetal lung maturity
- 15. Faecal fat estimation
- 16. Titrable acidity
- 17. Triple test
- 18. Laboratory investigations of polyuria
- 19. Estimation of free and total acidity in gastric juice
- 20. Exogenous marker of GFR
- 21. Tets for renal tubular functions
- 22. Pentagastrin test
- 23. Screening of cushings syndrome
- 24. Test to estimate serum bilirubib
- 25. Urobilinogen
- 26. Significance of sweat chloride estimation
- 27. Prothrombin time
- 28. Test for male infertility

ACID BASE BALANCE

ESSAY – 10 MARK

- 1. Define buffer. Add note about body buffer system
 - Definition of buffer
 - Mechanism
 - ➢ Examples with detail
- 2. Define P^H , add a note about renal regulation of P^{H} .
 - ➢ Define
 - > 4 stages of renal regulation of P^H with diagrams
- 3. Respiratory and renal regulation of P^H
 - ➢ Regulation
 - Role of kidney and lungs disorders
- 4. Discuss the disturbance in acid base balance
 - Write detail about alkalosis and acidosis-causes
 - ➢ Stages
 - > Symptoms
 - Compensatory mechanism
- 5. Acidosis and alkalosis
 - ➢ Write detail about alkalosis and acidosis-causes
 - Stages
 - Symptoms
 - Compensatory mechanism
- 6. Write detail about fluid and electrolyte balance
 - ➢ Hr.regulation
 - Rennin angiotensin mechanism
 - ➢ Na/k metabolism
- 7. Define P^{H} , add a note about estimation of blood gases.
 - ➢ Define
 - \blacktriangleright Detection methods of P^H

- Blood gas analysis
- 8. What is the normal P^H of blood ? explain the role of plasma buffers and renal mechanism in the maintenance of acid –base balance of the body
 - > Define
 - Role of buffers
 - Renal regulation
- 9. What is the titratable acidity of urine? What is the role of kidney in maintaining acid base balance
 - Define titratable acidity
 - Renal regulation
- 10. Discuss the regulation of pH. Describe the principles and procedure of arterial blood gas analysis
 - ➢ Define pH
 - Role of buffers
 - Renal regulation
 - Respiratory regulation
 - > ABG analyser- principle , procedure , clinical importance
- 11. What is the normal plasma pH[·] What are the different mechanisms for the regulation of acid base balane. Describe the renal regulation of pH
 - > Define PH
 - Normal pH
 - Role of buffers
 - Renal regulation
 - respiratory regulation
 - Renal regulation in detail

SHORT NOTES-5 MARKS

- 1. Body buffer system
 - > Definition
 - Mechanism

- ➢ Examples
- > And it's role
- 2. Respiratory regulation of P^H
 - ➢ Define
 - Regulation with diagram
 - Disorders

3. Alkalosis

- ➢ Define
- ➤ Types
- ➢ Causes
- Compensatory mechanism
- 4. Acidosis
 - ➢ Define
 - > Types
 - ➢ Causes
 - Compensatory mechanism

5. P^H

- ➢ Define
- Regulation
- Mechanism
- Detection methods
- 6. Metabolic acidosis
 - > Define
 - > Causes
 - Compensatory mechanism
 - > Symptoms
 - > Treatment
- 7. Metabolic alkalosis
 - ➢ Define
 - ➢ Causes

- Compensatory mechanism
- > Symptoms
- > Treatment
- 8. Respitatory alkalosis
 - ➢ Define
 - ➤ Causes
 - ➢ Compensatory
 - ➤ Mechanism
 - > Symptoms
 - > Treatment
- 9. Respiratory acidosis
 - > Define
 - ➤ Causes
 - Compensatory mechanism
 - > Symptoms
 - > Treatment
- 10. Osmolality
 - > Definition
 - Role
- 11. Blood gas estimation
 - Principle
 - > Procedure
 - > Parameters
 - Precautions
- 12. Bicarbonate buffer system of blood
 - ➢ Define
 - Mechanism
 - > Role
- 13. Alkali reserve
 - ➢ Define

- ➢ Mechanism
- 14. describe the principle and functioning of Ph meter
 - ➢ Introduction
 - > Principle
 - > Working
- 15. What are the renal mechanisms for regulating acid base balance
 - ➢ Define
 - Regulation with diagram
 - Disorders
- 16. Factors regulating fluid balance
 - Fluid balace components
 - Factors for regulation
- 17. Assessment of acid base status
 - ➢ Define
 - ➢ Regulation
 - Mechanism
 - Detection methods

ANSWER BRIEFLY -3 MARKS

- 1. Body buffers
- 2. Respiratory regulation of P^H
- 3. P^H
- 4. Metabolic acidosis
- 5. Metabolic alkalosis
- 6. Respitatory alkalosis
- 7. Respiratory acidosis
- 8. Osmolality
- 9. Osmolar gap
- 10. Anion gap
- 11. ABG analyser

- 12. Describe the salient features of metabolic acidosis
- 13. Define osmolality and mention the normal plasma osmolality
- 14. Normal levels of po2, pco2, serum bicarbonate

AUTOMATION

ESSAYS-10MARKS

- 1. Define Automation.explain the different types of auto analyzers
 - Definition
 - > Types
 - > Parts
 - Merits and demerits
- 2. Define automation. Write in detail about discrete analyzers
 - Define
 - Types
 - > Part
 - Procedure
 - ➤ Merits
 - > Demerits
- 3. Define automation. Write in detail about Continues flow analyzers
 - Define
 - > Types
 - > Parts
 - Procedure
 - > Merits
 - > Demerits
- 4. Definition, Functions, Principle, Different parts and functions, Merits and demerits of different auto analysers
 - ➢ Define
 - > Types

- > Parts
- > Procedure
- ➢ Merits
- > Demerits
- 5. Enumerate various types of auto analyzers. Descibe the principle, parts ,function, merits and demerits of dry chemistry analyzer
 - ➢ Define
 - ➤ Types
 - > Parts
 - > Procedure
 - ➢ Merits
 - Demerits
- 6. Describe principle, parts and functions of auto analyzers
 - ➢ Definition
 - > Principle
 - > Parts
 - ➢ Functions
- 7. Describe principle, parts and functions of semi automated analyzers
 - Definition
 - > Principle
 - > Parts
 - ➤ Functions
- 8. Discuss the parts, functions, merits and demerits of fully automatic analyzers
 - > Define
 - > Types
 - > Parts
 - > Procedure
 - Merits
 - > Demerits
- 9. Describe principle, parts and functions of semi automated analyzers. How it is different from fully automated analyser

- > Definition
- > Principle
- > Parts
- ➢ Functions
- > Difference between semi and fully automatic analysers

SHORT NOTES-5 MARKS

- 1. CFA
 - ➢ Define
 - > Types
 - > Parts
 - Picture
 - > Procedure
 - > Merits
 - > Demerits
- 2. Semi auto analyzer
 - > Define
 - ➤ Types
 - > Parts
 - > Procedure
 - > Merits
 - > Demerits
- 3. Centrifugal analyzer
 - > Types
 - ➢ Method
 - ➤ Merits
 - > Demerits
- 4. LIS
 - ➢ Definition
 - ➢ Components
 - ➢ Uses

- 5. Recent trends in automation
 - \triangleright New method
 - > Principle
 - > Procedure
 - ➢ Examples
 - Merits and demerits

6. Fully auto analyzer

- > Types
- > Method
- ➢ Features
- > Merits
- > Demerits
- 7. Drychemistry analyzer
 - > Types
 - > Method
 - ➤ Merits
 - ➢ Demerits
- 8. Descrete analyzer
 - > Types
 - > Method
 - > Merits
 - Demerits
- 9. Batch analyzers
 - > Types
 - ➢ Method
 - ➢ Merits
 - ➢ Demerits
- 10. Random access analyzer
 - ➤ Types
 - > Method
 - > Merits

- > Demerits
- 11. Automation in clinical lab
 - > Types
 - > Method
 - > Merits
 - Demerits
- 12. STAT analyzer
 - > Types
 - > Method
 - > Merits
 - ➢ Demerits
- 13. POCT
 - Definition applications
- 14. Discuss the principles of laboratoty automation
 - > Types of auto analysers and principles
- 15. Describe the merits and demerits of dry chemistry analyser
 - > Types
 - > Method
 - > Merits
 - > Demerits

ANSWER BRIEFLY-3MARKS

1. LIS

QUALITY CONTROL

ESSAYS-10MARKS

- 1. Define QC. Write in detail about IQC
 - > Definition
 - > Types
 - > IQC
 - > QC charts
 - ➢ Errors
 - Control sera
 - > Variables
 - Statistics

2. Write an essay on internal quality control

- > IQC
- > QC charts
- ➢ Errors
- Control sera
- > Variables
- Statistics
- 3. Define QC.add a note on QC charts
 - Definition of QC types
 - > Types of charts types
 - Definition
 - Uses merits
 - > Demerits
 - Examples with diagrams
- 4. Write an essay on QC
 - Definition
 - ➤ Types
 - ► IQC
 - ≻ EQC
 - > QC charts

- ➢ Errors
- Control sera
- ➢ Variables
- Statistics
- 5. Discuss the quality control programmes in a clinical laboratory
 - > Definition
 - > Types
 - > IQC
 - ► EQC
 - > QC charts

6. Define quality in laboratory management . Discuss the principles and elements of quality management. Add a note on quality control programmes

- > Definition
- Principles and elements
- > Types
- > IQC
- ≻ EQC
- > QC charts

SHORT NOTES-5 MARKS

- 1. QC charts
 - > Types
 - > Definition
 - Uses merits
 - > Demerits
 - Examples with diagrams
- 2. LJ charts
 - ➢ Purpose
 - Features and Chart
- 3. Referance interval

- Definition
- > Preparation
- ≻ Use
- ➢ Significance
- 4. Preanalytical variables
 - > Definition
 - > Variables
 - ➢ Corrections
- 5. Analytical variables
 - > Definition
 - > Variables
 - ➢ Corrections
- 6. Control sera
 - ➢ Prepation
 - > Purpose
 - ➢ Storage
 - > Method
- 7. Quality control programme
 - > IQC &EQC
- 8. IQC
 - > Definition
 - ➢ Errors
 - Correction procedure
 - Statistical procedures
 - Control sera
- 9. EQC
 - Definition
 - > Procedure
 - ➤ authorised agency
 - ➢ Control srea

- ➢ Statistics
- 10. Statistical procedure used in establishing reference values
 - Measures of central tendancy
 - Measures of dispersion
- 11. Quality assessment
 - > Definition
 - Pcocedures
 - > Programmes
 - > Interpretations
- 12. Errors
 - Definition
 - > Types
 - ➢ Errors
 - Corrections
- 13. Sensitivity and specificity
 - Dentition
 - > Importance
- 14. Cusum chart
 - > Purpose
 - Features and Chart
- 15. West guard rules
 - Rules and explanations
- 16. 16 Establishment of reference interval
 - Definition
 - > Preparation
 - ≻ Use
 - ➢ Significance
- 17. Postanalytical variables
 - Definition

- > Variables
- ➢ Corrections
- 18. Standard deviation
 - Dentition
 - > Importance
 - ➢ Formula
 - ➤ Calculation

ANSWER BRIEFLY-3MARKS

- 1. Precision
- 2. Accuracy
- 3. Sensitivity
- 4. Specificity
- 5. Normal Value
- 6. Random errors
- 7. Systemic errors
- 8. SD
- 9. Mean
- 10. CV
- 11. Mode
- 12. LJ charts
- 13. Use of reference values
- 14. Control sera
- 15. Difference between accuracy and precision
- 16. Describe three preanalytical variables
- 17. Define standard deviation and how it is calculated
- 18. Define precision and accuracy
- 19. Difference between sensitivity and specificity

HORMONES

ESSAY-10MARKS

- 1. Write in detail about synthesis, storage and role of thyroid hormone. Add a short note about Estimation of thyroid hormones
 - > Synthesis
 - > Storage
 - ➢ Regulation
 - Mechanism of action
 - Clinical significance
- 2. Write in detail about synthesis, storage and role of adrenal hormone. Add a short note about Estimation of adrenal hormones
 - > Synthesis
 - Storage
 - ➢ Regulation
 - Mechanism of action
 - Clinical significance
- 3. Write in detail about synthesis, storage and role of adrenal cortex hormone. Add a short note about Estimation of adrenal hormones
 - > Synthesis
 - Storage
 - Regulation
 - Mechanism of action
 - Clinical significance
- 4. Write in detail about synthesis, storage and role of adrenal hormone. Add a short note about Estimation of adrenal medullary hormones
 - > Synthesis
 - Storage
 - ➢ Regulation
 - Mechanism of action
 - Clinical significance

- 5. Define hormones. Describe the mechanism of action of group 2hormones
 - ➢ Definition
 - ➢ Types of mechanism
- 6. Define hormones. Describe the mechanism of action of group 1hormones
 - > Definition
 - Types of mechanism
 - Explanation with examples
- 7. Write in detail about synthesis, storage and role of pancreatic hormone. Add a short note about Estimation of pancreatic hormones
 - > Synthesis
 - > Storage
 - Regulation
 - Mechanism of action
 - Clinical significance

SHORT NOTES-5MARKS

- 1. Hormone receptor
 - ➢ Define
 - Characteristics
- 2. G protein
 - Structure
 - > Types
 - Diagram
- 3. Insulin receptor
 - > Structure
- 4. Insulin
 - Structure
 - Mechanism of action
 - ➢ Functions

- 5. Hypothalamic hormones
 - > Types
 - > Synthesis
 - ➢ Function
 - Clinical importance

6. TFT

- > Types
- > Synthesis
- ➢ Function
- Clinical importance
- 7. Mineralocorticoids
 - ➤ Types
 - > Synthesis
 - ➢ Function
 - Clinical importance

8. Glucocorticoids

- Types
- > Synthesis
- ➢ Function
- Clinical importance
- 9. Aldosterone
 - > Types
 - > Synthesis
 - ➢ Function
 - Clinical importance
- 10. Mechanism of action of group2 hormones
 - Mode of actions with examples
- 11. Anterior pituitatory hormones
 - > Typessynthesis
 - ➤ Function

Clinical importance

- 12. Mechanism of action of group2 hormones
 - Mechanism of action with example
- 13. Parathyroid hormones
 - ➤ Types
 - > Synthesis
 - ➤ Function
 - Clinical importance
- 14. cAMP
 - > Synthesis
 - Mechanism of action
 - ➢ Roleas 2nd messengers
- 15. cGMP
 - > Synthesis
 - Mechanism of action
 - Roleas 2nd messengers
- 16. posterior pituitatory hormones
 - > Type
 - > Synthesis
 - ➤ function
 - Clinical importance

17. ADH

- > Synthesis
- ➢ Functions
- Clinical importance
- 18. Oxytocin
 - ➢ Synthesis
 - ➤ Function
 - Clinical importance

- 19. Growth hormone
 - > Synthesis
 - ➢ Function
 - Clinical importance
- 20. Catecholamines
 - > Synthesis
 - ➢ Function
 - Clinical importance
- 21. Steroid hormones
 - > Synthesis
 - ➢ Function
 - Clinical importance
- 22. Estimations of catecholamones
 - ➢ Method
 - > Principle
 - > Procedure
 - Normal range
 - Clinical significance
- 23. Estimations of VMA and its significance
 - > Method
 - Principle
 - > Procedure
 - Normal range
 - Clinical significance

24. Estimations of 5OH IAA

- > Method
- > Principle
- ➢ Procedure,
- ➢ Normal range
- Clinical significance

- 25. Estimations of 17 Ketosteroid (17 oxosteroids)
 - > Method
 - > Principle
 - > Procedure
 - ➢ Normal range
 - Clinical significance

26. Pancreatic hormones

- > Synthesis
- ➤ TYPES
- > Role
- ➢ Significance
- ➢ Regulations

27. Glucagon

- > Synthesis
- > Structure
- Role
- ➢ Regulation
- Mechanism of action
- > Significance

28. Gonadal hormones

- > Synthesis
- Structure
- > Role
- Regulation
- ➢ Mechanism of action
- ➢ Significance

29. Parathyroid hormones

- > Synthesis
- ➢ STRUCTURE
- Role
- ➢ Regulation

- ➢ mechanism of action
- ➢ Significance
- 30. Determination of estrogen in plasma and urine
 - ➢ Introduction
 - > Method
 - > Principle
 - > Procedure
 - normal range
 - Clinical significance
- 31. General techniques in steroid estimation
 - ➢ Introduction
 - > Method
 - > Principle
 - > Procedure
 - ➢ normal range
 - Clinical significance
- 32. Urinary VMA
 - > Synthesis
 - ➤ function
 - ➢ estimation
 - clinical importance
- 33. Urinary 17 ketosteroids
 - > Synthesis
 - ➢ function
 - ➢ estimation
 - clinical importance
- 34. Synthesis of thyroid hormones and methods available for its estimation
 - > Synthesis
 - \succ function
 - \succ estimation
 - clinical importance

- 35. Mechanism of action of steroid hormones
 - Mechanism of action with example
- 36. Action of insulin in regulating blood glucose
 - Insulin action in various pathways of carbohydrate metabolism (glycolysis, gluconeogenesis, glycogen metabolism)

ANSWER BRIEFLY-3MARKS

- 1. FSH
- 2. LH
- 3. Thyroid hormone
- 4. Parathyroid hormone
- 5. Progesterone
- 6. Biosynthesis of estriol
- 7. Adrenal hormones and associated diseases
- 8. VMA
- 9. Urinary 5HIAA
- 10. Synthesis of adrenocortical hormones
- 11. Determination of urinary estriol
- 12. Urinary 17 ketosteroids
- 13. Urinary VMA estimation
- 14. Urinary 5HIAA estimation
- 15. Action of insulin on lipid mstabolism
- 16. Formation of progesterone

ORGANIZATION AND MANAGEMENT OF BIOCHEMISTRY LABORATORY

ESSAY-10MARKS

- 1. Organization and management of the Clinical biochemistry lab
 - Structure and organization
 - ➢ Equipment
 - Document system

- ➢ Safety
- ➢ Manpower

TOXICOLOGY

ESSAY-10MARKS

- 1. General methods of analysis and screening test for common drugs used in therapy
 - Drugs classification
 - > Methods-principle
 - > Procedure
 - ➢ Interpretations

SHORT NOTES-5MARKS

- 1. LSD
 - > Types
 - Mechanism of action
 - ➢ Uses
 - Adverse effects
 - ➤ Analysis

2. Barbiturate

- > Types
- Mechanism of action
- ≻ Use
- Adverse effects
- > Analysis
- 3. Paracetamol
 - > Types
 - Mechanism of action
 - ➤ Uses
 - ➢ Adverse effects

- ➤ Analysis
- 4. Antidepression drugs
 - > Types
 - Mechanism of action
 - ➢ Uses, adverse effects
 - ➤ Analysis
- 5. Drug assay in clinical biochemistry
 - ➤ Types
 - Mechanism of action
 - Uses, adverse effects
 - Analysis methods

ANSWER BRIEFLY-3MARKS

1. Screening test for barbitone

MOLECULAR BIOLOGY

ESSAY -10 MARK

- 1. Describe about the process of DNA replication in detail
 - > Definition
 - Types
 - > Stages of replication
 - > Inhibitors
 - Diagram
- 2. Describe about replication in detail, add a note about difference of replication in eukaryotes and prokaryotes
 - ➢ Define
 - Stages
 - > Picture
 - Difference between eukaryotes and prokaryotes
- 3. DNA repair mechanism

- > Definition
- Classification
- Clinical aspect of repair mechanism
- 4. Central dogma of genetics
 - ➢ Replication
 - ➢ Transcription
 - ➤ Translation
- 5. Define transcription, add a note about stages of transcription and post transcriptional modifications.
 - Definition
 - Stages
 - Diagram, and posttranscriptional modification
- 6. Define translation, add a note about stages of translation and post transcriptional modifications.
 - Definition
 - ➢ Stages
 - ➢ Diagram
 - And post transcriptional modification
- 7. Regulation of gene expression in prokaryotes
 - Types and stages- operon concept
- 8. Discuss about translation and add a note about genetic code
 - Definition
 - Stages of translation
 - Characters of genetic code
- 9. Regulation of gene expression in eukaryotes
 - Types and stages
- 10. Define PCR, stages of PCR, and add it's applications
 - > Define
 - ➤ Stages

- > Types
- > Applications
- 11. Define blotting technique, add a note about southern blotting
 - ➢ Definition
 - > Types
 - Southern blotting technique-stages and application

SHORT NOTES-5 MARK

- 1. Central dogma of genetics
 - ➢ Replication
 - ➢ Transcription
 - ➢ Translation
- 2. Replication
 - > Definition
 - Stages
 - Diagram
- 3. DNA polymerase
 - ➤ Action
 - > Types in eukaryotes and prokaryotes
- 4. Semicoservative mode of replications
 - Definition
 - Types
 - > Salient features
- 5. Major enzymes and other proteins involved in DNA replication
 - Enzymes and proteins in replications
- 6. Add a note about cell cycle and it's role
 - Cell cycle and different phases
- 7. Difference between replication in eukaryotes and prokaryotes

- > Table representation of diference between eukaryotes and prokaryotes
- 8. DNA polymerase and RNA polymerase
 - ➢ It's action
 - Classification
 - Role in genetics
- 9. DNA repair mechanism
 - ➢ Define
 - Different types of defects
 - And different types of mechanism
- 10. Stages of transcription
 - ➤ Initiation
 - ➢ Elongation
 - Termination
 - Post transcriptional modifications
- 11. Genetic code
 - Salient features of genetic code
- 12. Translation of m-RNA
 - Explain the stages with diagram
- 13. Chaperone
 - > Define
 - > Mechanism
 - > Properties
 - Examples
- 14. Inhibitors of replication
 - ➢ Write examples of each drug with it's role
- 15. Inhibitors of transcription
 - ➢ Write examples of each drug with it's role
- 16. Inhibitors of translation

- ➢ Write examples of each drug with it's role
- 17. Lac operon
 - > Picture
 - ➢ Repression
 - Derepression mechanisms

18. Mutations

- ➢ Define
- Classifications
- ➢ Mutagens
- ➢ Detection
- 19. Vectors
 - ➢ Define
 - > Types
 - Role
 - Classification
- 20. Cloning
 - ➢ Define
 - ➢ Stages
 - > Application
- 21. Gene library
 - > Definition
 - genetic library
 - c.DNA library
 - > DNA probes
 - > Applications
- 22. Blotting technique
 - ➤ 3 types and applications
- 23. Southern blotting
 - > Definition

- > Procedure
- ➤ Stages
- ➢ Application
- 24. Northern blotting
 - ➤ Definition
 - > Procedure
 - ➤ Stages
 - > Application
- 25. Western blotting
 - > Definition
 - > Procedure
 - ➤ Stages
 - ➢ Application
- 26. T-RNA
 - > Structure
 - > Parts
 - ➢ Classification
 - ➤ Function
- 27. RT-PCR
 - Stages
 - > Procedure
 - > Difference between conventional PCR and RT PCR

28. HGP

- > Define
- ➢ History,
- ➢ Benefits
- 29. FISH
 - Define
 - ➤ Stages
 - Application

- 30. Protein folding and protein targeting
 - ➢ Define
 - > Stages
 - ➢ Factors
- 31. Recombinant DNA technology
 - ➢ Define
 - ➢ Stages
 - Application
- 32. Post transcriptional modifications
 - Modification methods
- 33. Post translational modifications
 - Modification methods
- 34. Tools for recombinant DNA technology
 - ➢ Define
 - Stages
 - ➤ Tools
 - Application
- 35. 35)Prenatal diagnosis of genetic disorder
 - Diagnostic methods-principle and procedure

ANSWER BRIEFLY- 3 MARKS

- 1. DNA polymerase
- 2. Semicoservative mode of replications
- 3. Major enzymes and other proteins involved in DNA replication
- 4. Cell cycle
- 5. Difference between replication in eukaryotes and prokaryotes
- 6. DNA polymerase and RNA polymerase
- 7. Genetic code
- 8. Chaperone
- 9. Inhibitors of replication

- 10. Inhibitors of transcription
- 11. Inhibitors of translation
- 12. Gene library
- 13. Vectors used in recombinanant DNA technology
- 14. Southern blotting
- 15. Post translational modifications
- 16. Cloning
- 17. Structure of DNA
- 18. FISH
- 19. PCR
- 20. Protein targeting
- 21. Blotting techniques
- 22. Protein folding
- 23. Applications of blotting techniques in laboratory diagnosis
- 24. Gene therapy
- 25. Okazaki fragments

COMMON TOPICS

SHORT NOTES- 5 MARKS

- Ion selective electrodes
- Flame photometry
- > Tumor markers

ANSWER BRIEFDY – 3 MARKS

- Flame photometry
- Principles of colourimetry
- Principles of flame photometry
- > Bohr effect