THIRD YEAR BSC PERFUSION TECHNOLOGY APPLIED

QUESTION BANK

ESSAY

1. Anticoagulation and its monitoring during CPB

Anticoagulation

- > Anticoagulation is used to prevent blood clotting in veins, arteries and lungs
- Discovered: Jay Mc Lean (1916)
- ➢ Source: Liver
- Dosage: 3-4 mg/kg
- ➤ Half life: 40-60 minutes
- MOA: inhibits reactions that leads to clotting of blood and formation of fibrin clots both in vitro and in vivo
- Heparin resistance: inability to rise ACT to expected levels despite inadequate dose and plasma conc of heparin.
- Heparin less bypass
- ≻ HIT
- Monitoring: ACT
- Heparin alternatives: LMWH, Bivalirudin, Hirudin, Argartroban, Dermatan sulfate, Lepirudin
- > Adverse effects of heparin: bleeding, deep vein thrombosis, osteoporosis

2. Assisted devices

- Circulatory assisted device: IABP and VAD
- ► IABP:
- Circulatory assist device used to support LV in LV failure patients
- Working principle: counter pulsation
- IABP Balloon :Filled with helium gas, do not cause harm to patient even if the balloon ruptures

- Access: descending aorta, 1-2cm below the subclavian artery and above renal artery
- > Contraindications: irreversible brain damage and aortic dissection
- Advantage: decreased coronary oxygen demand, increased coronary oxygen supply
- > Complications: pseudo aneurysm, renal failure
- Timing errors
- > VAD
- > It is used to partially or completely support a failing heart
- Type: LVAD, RVAD, BIVAD
- > Types of mechanical circulatory support: short term and long term
- > Indications: failure in weaning, myocarditis, cardiomyopathy, CP arrest
- > Advantages: low priming volume, low level of anticoagulation
- Disadvantages: shorter duration, infection
- > Complication: hypovolemia, kinking, arrhythmia

3. Describe the techniques of blood conservation during CPB

- Aim: to use blood or blood products appropriately and find ways to reduce or avoid the need for blood transfusion
- > Techniques:

Ultrafiltration

- Used in pediatric patients
- Have low blood volume
- High priming volume

VAVD

- To decrease priming volume
- Small cannulas used
- Increase venous drainage

Microplegia

- Called miniplegia
- Short term surgeries
- Intermittent warm blood CP

Autologous blood predination

- ➢ Safe and efficient
- ➢ Hct 22-25% in CPB
- Not suitable for neonatal surgery

Cell salvage technique

- Scavanges blood loss
- > Types: non washed and washed techniques
- Reduce allogenic blood transfusion

Retrograde autologous priming

- Hemodynamic stable patient
- ➢ Low HCT patient
- Reduce blood transfusion

Antegrade autologous priming

Displacing some of circuit prime at initiation of CPB with patients own circulating blood

4. Explain systemic inflammatory response syndrome. What are the pathophysiological changes

- > Offers protection to organs from pathological insults
- > Activation of immune system occurring in the context of CPB is multifactorial
- Due to activation of immune system
- CPB activates innate and acquired system
- Indicates various infectious and non infectious conditions
- > CPB produces whole body inflammatory response
- Clinical manifestations of SIRAB
- Pulmonary, renal, CNS dysfunction
- ➢ Coagulopathy
- Sequence which CPB leads to SIRS
- ➢ Initiating factors
- Immune system activation
- Cellular injury

- Cellular components of blood
- ➢ RBC
- Vascular endithelium
- Leukocytes
- ≻ WBC
- Minimise SIRS
- Pharmacological: aprotinin
- ▶ Mechanical manipulation: CUFF, MUFF

5. Discuss and enumerate in detail on ultrafiltration and its types during CPB

- Filtration using a medium fine enough to retain colloidal particles viruses or large molecules
- Made of fibres
- > Indication: patient not responding to dialysis therapy, renal failure
- > Principle:hydrostatic pressure forces a liquid against a semipermeable membrane
- Sieving coefficient
- > Advantage:remove excess volume in reservoir, decrease lung water
- > Types: 4 types
- > **Pre-BUFF**: also called prime filtration
- Filtration during priming
- Duration: 10 mins
- > CUFF: used to concentrate circuit
- Reduce cerebral edema
- ➢ Widely used

> Z-BUFF

- Done during rewarming
- Decrease pulmonary vascular resistance
- Correct electrolyte imbalance

> MUFF

- ➢ Used after bypass
- Pediatric and neonate patients

➤ 2 types: arteriovenous and venovenous

SHORT NOTES

➢ Haematological effects on CPB.

1. Blood cell trauma

- RBC damage occurs due to artificial valve, hear lung machine and other devices which pumps or process blood
- Mechanical stress to RBC
- Analysis of cell damage
- > Types: shear stress, blood viscosity, turbulence, cavitation
- ➢ Effects on RBC and WBC
- Damages to RBC
- Leukocytes, neutrophils, monocytes
- Uses of analysis of force

2. Heparin and its alternatives

- > Heparin is used to prevent blood clotting in veins, arteries and lungs
- Discovered: Jay Mc Lean (1916)
- ➢ Source: Liver
- Dosage: 3-4 mg/kg
- ➤ Half life: 40-60 minutes
- MOA: inhibits reactions that leads to clotting of blood and formation of fibrin clots both in vitro and in vivo
- > Alternatives:

LMWH: potent inhibitor of factor Xa

- > Dermatan sulfate: inhibition of thrombosis by heparin cofactor lll
- Hirudin: isolated from medicinal leeches
- Bivalirudin: synthetic analogue of hirudin
- Synthetic peptide
- 3. HIT

- > Occurs in 3-5% of patients during or after administration of UFH treatment
- Causes: hyperspleenism and hemodilution
- Types: 2 types
- > Type 1: non immune mediated
- > No antibody mediated
- > Type 2: immune and antibody mediated
- Complication: deep vein thrombosis, MI
- > Treatment: prompt cessation of heparin and heparin alternatives
- ➢ Heparin alternative

4. Pump lung syndrome

- Also known as acute respiratory distress syndrome, adult respiratory distress syndrome, shock lung
- Fatal pulmonary parenchymal disorder
- Causes trauma or stress
- > Shock lung develops edema, impaired perfusion
- Etiology: pneumonia, trauma, shock
- Management: nitric oxide, 18 PPM reduce mean pulmonary artery pr

5. Arterial line filters

- Cardiopulmonary bypass arterial line blood filter is a device used as part of a gas exchange (oxygenator) system to filter non-biologic particles and emboli out of the blood.
- Located: after oxygenator and before patient
- > Function: reduce the load of gaseous and particulate emboli
- Advantages: prevention of micro emboli, either being particulate or micro air from reaching the patients circulation
- Working principle: adsorption
- Pore size: 20- 40 micrometre

6. Massive air embolism and its management

- > Micropore filters are used to prevent the perfusion of microemboli during CPB
- ▶ History: Dr RL Swank, Dr RH Patterson, further development in 1970

- > Contaminations: particulate and gaseous contamination
- Massive air embolism: abnormal collection of gas which forms a bubble creating blockade in circuit
- Causes: rupture of arterial lines and connectors, oxygenator defect, arterial reservoir run dry, sudden acceleration of roller pump
- > Management: placing the patient in a deep Trendelenburg position
- Temporary retrograde perfusion through the superior vena cava (SVC) may also be used.
- Stop CPB immediately
- Clamping venous line
- Remove arterial filter
- Induce hypertension
- ► RCP

7. Compliment and contact activation

> Pathway

8. Z-BUFF

- Ultrafiltration is the Filtration using a medium fine enough to retain colloidal particles viruses or large molecules
- ➢ Made of fibres
- > Indication: patient not responding to dialysis therapy, renal failure
- > Principle:hydrostatic pressure forces a liquid against a semipermeable membrane
- Z-BUFF is the process by which a solution is infused into CPB circuit and an equal volume of fluid is removed by an ultrafiltration column
- Done during rewarming
- Decrease pulmonary vascular resistance
- Correct electrolyte imbalance
- Used to remove large volume of ultrafiltrate
- Water soluble inflammatory mediators are removed
- Decrease PVR

9. Protamine reaction

- Antidote for heparin
- History: John Fredrich (1870)
- MOA: binds with heparin to produce a stable precipitate which has no anticoagulant property and has mild anticoagulant effect independent of heparin
- Source: sperms of salmon fish
- > Dosage: 1-1.3 mg of protamine for each 100 units of heparin
- ➢ Reactions: 2 types
- Horrow classification and Moorman Zapol Lowenstein classifiaction

10. Complication of blood transfusion

- A blood transfusion is a routine medical procedure in which donated blood is provided to you through a narrow tube placed within a vein in your arm.
- Types: packed red blood cells (PRBCs), individual factor concentrates, fresh frozen plasma (FFP), platelet concentrates, and cryoprecipitate.
- Indications: Anaemia.
- Major Surgical Operation.
- Accidents resulting in considerable blood loss.
- Cancer patients requiring therapy.
- > Women in childbirth and newborn babies in certain cases.
- > Patients of hereditary disorders like Haemophilia and Thalassaemia.
- Severe burn victims.
- Complications: Early Complications:
- Hemolytic reactions (immediate and delayed)
- Non-hemolytic febrile reactions.
- Allergic reactions to proteins, IgA.
- Transfusion-related acute lung injury.
- Reactions secondary to bacterial contamination
- Circulatory overload.
- > Air embolism.

11. Effects of CPB on kidney

➢ Function of kidney

- > Osmolarity
- Ionic composition
- Vital role: organ of endocrine function
- Regulating RBC mass by production
- > Prevention of renal ischemia :increasing oxygen delivery reducing oxygen demand
- Risk factors: preop, operative, perioperative
- > Pharmacological therapy: frusemide, dopamine, mannitol, nifedipine
- > Treatment: renal replacement therapy(dialysis/hemofiltration)

12. Autologous blood priming

- Means to effectively and safely restrict the hemodilution caused by the direct homologous blood transfusion and reduce the blood transfusion requirements during cardiac surgery.
- Types: retrograde autologous priming
- Blood is taken through arterial side
- Reduces blood transfusion
- Reduce homologus blood transfusion
- Reduce priming volume
- Antegrade Autologus priming :
- Blood is taken through venous side.
- > Displacing some of circuit prime at initiation of CPB with patients own circulating
- Lower blood transfusion rate perioperatively
- Shorter hospital stays

13. Screen filters

- > Micropore filters are used to prevent the perfusion of microemboli during CPB
- ▶ History: Dr RL Swank, Dr RH Patterson, further development in 1970
- Contaminations: particulate and gaseous contamination
- Composition : polymer threads woven into fibres of definied porosity
- Function : partical removal
- Mechanism: direct interception
- > It will not allow particles larger than their pore size
- Small wetted surface area

Large open surface area

14. Major transfusion reaction

- A blood transfusion is a routine medical procedure in which donated blood is provided to you through a narrow tube placed within a vein in your arm.
- Types: packed red blood cells (PRBCs), individual factor concentrates, fresh frozen plasma (FFP), platelet concentrates, and cryoprecipitate.
- Indications: Anaemia.
- Major Surgical Operation.
- > Accidents resulting in considerable blood loss.
- Cancer patients requiring therapy.
- ▶ Women in childbirth and newborn babies in certain cases.
- > Patients of hereditary disorders like Haemophilia and Thalassaemia.
- Severe burn victims.
- Transfusion reactions are adverse events associated with the transfusion of whole blood or one of its components.
- Types of transfusion reactions include the following: acute hemolytic, delayed hemolytic, febrile non-hemolytic, anaphylactic, simple allergic, septic (bacterial contamination), transfusion-related acute lung injury (TRALI), and transfusionassociated circulatory overload (TACO).

15. Hemodialysis and hemofiltration

- Filtration using a medium fine enough to retain colloidal particles viruses or large molecules
- Made of fibres
- > Indication: patient not responding to dialysis therapy, renal failure
- > Principle:hydrostatic pressure forces a liquid against a semipermeable membrane
- Sieving coefficient
- Advantage:remove excess volume in reservoir, decrease lung water
- ➤ Types: 4 types
- ▶ Hemodialysis: 0-9% normal saline used
- > Indication: end stage renal disease, renal insufficiency
- > Effective in removal of pottasium, urea and electrolyte

Hemofilter can more effectively remove the middle molecule solutes compared with hemodialysis by convection

ANSWER BRIEFLY

1. Thromboelsatography

- > Quantitatively measures the ability of whole blood to form a clot.
- Principle: to detect and quantify dynamic changes of the viscoelastic properties of a blood sample during clotting under low shear stress.
- Types: Standard (kaolin), RapidTEG, heparinase, Functional Fibrinogen and Platelet Mapping.
- > Phases: the acceleration phase, strengthening, retraction, and clot lysis.

2. Timing errors in IABP

- ➢ Early inflation
- ➢ Late inflation
- ➢ Early deflation
- ➢ Late deflation

3. Tranexamic acid

- Tranexamic acid (TA) reduces blood loss and blood transfusion during heart surgery with cardiopulmonary bypass (CPB).
- Method:TXA reduced perioperative blood loss and transfusion requirements in a variety of surgical disciplines without increasing the risk of thromboembolic events.
- MOA: This decreases the conversion of plasminogen to plasmin, preventing fibrin degradation and preserving the framework of fibrin's matrix structure.
- > ADR: abdominal pain, vomiting, diarrhoea, pulmonary embolism
- Indication: haemophilia
- Contraindication: subarachnoid haemorrhage

4. Aprotinin

reduce the risk for perioperative blood loss and the need for blood transfusion in highrisk patients during cardiopulmonary bypass for coronary artery bypass graft surgery.

- Use :reducing bleeding and the need for blood transfusions after cardiac surgery with cardiopulmonary bypass.
- > ADR:atrial fibrillation, fever, nausea, low blood pressure, lung problems

5. Cell salvage technique

- Scavenges blood loss
- > Two techniques: non washed and washed technique
- Limitations and benefits

6. Heparin resistance

- inability to rise ACT to expected levels despite inadequate dose and plasma conc of heparin.
- Clinical conditions: Antithrombin Ill deficiency
- On going heparin therapy
- > ADR: bleeding, deep vein thrombosis
- > Treatment: heparin alternatives, administration of additional heparin
- ➢ ATIll suplementation with FFP

7. Contraindications of IABP

- Absolute: irreversible brain damage, aortic dissection
- Relative: mild PVD, infection

8. Heparin less bypass

- > Binding to internal surface of CPB circuit to reduce need for systemic heparinisation
- ➢ Indication: routine cardiac surgery and ECMO
- Methods:covalent and ionic bonding
- MOA: inhibits reactions that leads to clotting of blood and formation of fibrin clots both in vitro and in vivo
- Advantages: reduce blood loss and transfusion requirements

9. Cold agglutinin

> Antibodies that work on antigens found on surface of RBC

- Cause auto immune reaction
- > IgM antibodies in case where agglutination is significant
- ➢ Damages
- > Techniques to perfuse

10. CPB in sickle cell anemia

- Abnormal RBC that is crescent shaped
- > Strategy
- ➢ Diagnosis
- ➢ Management

11. Alternatives of protamine

- Antidote for heparin
- ➢ Hexamethridine
- ≻ PF4
- Methylene blue
- Omit neutralisation
- ➢ Heparinase

12. Activated clotting time

- Monitor the adequacy of perfusion
- \succ 480 seconds on pump
- ➢ Normal: 90-120 sec
- > Procedure
- Troubleshoot for ACT
- Indications

13. Bivalirudin

- Synthetic analogue of hirudin
- ➤ MOA
- ➢ Half life 25 min
- Dosage: bolus 0.75 mg/kg, infusion 1.75 mg/kg/hr

14. Albumin

- Colloid non blood prime
- Albumin can coat the circuit and decrease the contact between the blood and nonbiological materials
- MOA: increases the oncotic pressure of the intravascular system, moving fluids from the interstitial space, thereby decreasing edema and increasing the circulating blood volume.
- > ADR: Blurred vision, chest discomfort, chills, confusion.
- Uses:serious injury, bleeding, surgery, or burns by increasing the volume of blood plasma.

15. Component therapy

- Blood component transfusions are therapeutic treatments for patients with a variety of conditions. Blood components are obtained by whole blood donation or by apheresis collection.
- Uses: to treat a specific deficiency, avoid volume overload and minimize reactions to blood products that are not needed
- Indications: Anaemia. Major Surgical Operation. Accidents resulting in considerable blood loss. Cancer patients requiring therapy.
- Complications: transmission of infectious diseases, hemolytic and nonhemolytic transfusion reactions, immunosuppression

Prepared By –

AKHIL JOSE

KMCT COLLEGE OF ALLIED HEALTH SCIENCE MUTHALAM, MANASSERY P.O MUKKAM KOZHIKODE 673602